1	UNITED STATES DEPARTMENT OF ENERGY
2	PUBLIC SCOPING MEETING
3	CARBON SEQUESTRATION PROGRAM
4	
5	
6	
7	REPORT OF PROCEEDINGS had at the
8	Holiday Inn Hotel, 3405 Algonquin Road, Rolling Meadows,
9	Illinois on the 19th day of May, 2004.
LO	
L1	PRESENT:
L2	ON BEHALF OF THE DEPARTMENT OF ENERGY
L3	LLOYD LORENZI
L4	SCOTT KLARA
L5	
L6	
L7	
L8	
L9	
20	
21	
22	
23	

1 MR. LORENZI: We're going to start the meeting

- 2 a little bit late now. It's about eight minutes past
- 3 7:00, so let's begin.
- 4 This meeting was arranged by the U.S.
- 5 Department of Energy as part of a process to obtain
- 6 public participation for preparing environmental review.
- 7 What we call an environmental impact statement, which
- 8 will assist the Department of Energy in identifying and
- 9 prioritizing issues, evaluating potential impacts,
- 10 establishing a framework for environmental solutions and
- 11 defining a program for research, development and testing
- 12 of technologies and methods for the sequestration of
- 13 carbon dioxide. This is the third of eight meetings
- 14 planned around the country for that purpose.
- 15 The carbon sequestration activities
- 16 supported by the Department of Energy would help achieve
- 17 the goals of the global climate changing initiative,
- 18 which was announced by the President in 2002.
- 19 Now, an initiative requires two things
- 20 that we are focused on. One is the development of our
- 21 portfolio technology options with potential to reduce
- 22 the carbon intensity of the U.S. economy and second, to
- 23 establish an information base needed by the year 2012

1 for effective carbon sequestration decisions of balanced

- 2 economic growth and investment in clean energy
- 3 technologies.
- 4 The preparation or the implementation of
- 5 a carbon sequestration program to achieve these goals
- 6 provides the essence of the basis for the Department of
- 7 Energy decision to prepare an environmental impact
- 8 statement. And the orient important comments as well as
- 9 comments received at all other meetings until the
- 10 closing date for comment on June 25th will be an
- 11 important part of the effort to prepare that
- 12 environmental impact statement.
- 13 So I thank you all for your attendance.
- 14 My name is Lloyd Lorenzi and I'm from the Department of
- 15 Energy's Office in Pittsburgh, Pennsylvania. And we
- 16 have one other representative who will speak here
- 17 tonight from the Department of Energy and he will
- 18 introduce himself.
- 19 MR. KLARA: I'm Scott Klara with the
- 20 Department of Energy as well.
- 21 MR. LORENZI: Assisting the Department of
- 22 Energy in preparing the environmental impact statement
- 23 is a team of environmental and administrative

- 1 specialists lead by the Potomac-Hudson Engineering
- 2 Company. I would ask the representatives from Potomac-
- 3 Hudson team who are here tonight to introduce themselves
- 4 also.
- 5 MR. CAREY: Good evening. My name is Fred
- 6 Carey. I'm with Potomac-Hudson Engineering. I also
- 7 have Kevin Johnson with the ORS Corporation and Linda
- 8 Vlaeminick is --
- 9 MR. LORENZI: Thank you, sir. We also have a
- 10 Court Reporter here to prepare a transcript of this
- 11 meeting, particularly your comments which we, the
- 12 Department of Energy at Potomac-Hudson team will use to
- 13 document and identify views from the public regarding
- 14 the desire to scope the content of the environmental
- 15 impact statement.
- 16 The essence to the meeting we provided a
- 17 variety of information including the information on the
- 18 process to prepare an environmental impact statement as
- 19 well as the information on the Department of Energy's
- 20 current activities and plans for the future with regard
- 21 to studies of carbon sequestration. We've also provided
- 22 a registration sheet so I would encourage you all to
- 23 sign as a form of record for the Department of Energy on

- 1 your attendance here tonight.
- We've also provided comment sheets that
- 3 you can use tonight or following the meeting to submit
- 4 written comments. However, tonight we want to get oral
- 5 comments. That's why we're having this particular
- 6 meeting. And we will use those comments, as I
- 7 mentioned, as well as other comments received by the
- 8 closing date of June 25th, to assist us in preparing
- 9 that draft environmental impact statement.
- 10 The draft of that document, the
- 11 environmental impact statement, when it's completed will
- 12 be made available for review and comment also. And we
- 13 expect that the process to prepare that draft EIS will
- 14 require about 12 months. So sometime next summer is
- 15 probably the target date, the best target date that we
- 16 can provide for having that draft available for review.
- 17 Before we begin with your comments,
- 18 however, Scott Klara from the Department of Energy will
- 19 provide a summary of carbon sequestration activities.
- 20 Then the microphone will be open to you all for your
- 21 comments.
- MR. KLARA: Good evening, everyone. We
- 23 appreciate you taking time out of your busy schedule to

- 1 be with us here for this evening.
- 2 As Lloyd indicated, I will be giving you an
- 3 overview of the carbon sequestration program with the
- 4 United States Department of Energy.
- 5 I'd like to first start out and give you
- 6 an idea of the outline. I'll be up here probably about
- 7 25 minutes giving you this overview. And the areas that
- 8 I plan to cover are to give you an explanation about
- 9 what is carbon sequestration, information about fossil
- 10 energy, greenhouse gas situations in the United States,
- 11 talk about the Sequestration Program, give you some high
- 12 level insights into the program, then talk about a few
- 13 specific programmatic activities that could likely
- 14 benefit from this programmatic environmental impact
- 15 statement activity.
- 16 First let's talk about what is carbon
- 17 sequestration. Carbon sequestration essentially is the
- 18 capture and storage of greenhouse gases with CO2 being a
- 19 very predominant greenhouse gas and primarily storing
- 20 that so that it won't be emitted to the atmosphere.
- 21 Capture can occur in two ways. One is
- 22 directly in a facility like a power plant. Recapture
- 23 the CO2. You know exactly where it came from and you

1 store it somewhere. The other is what we call indirect

- 2 capture where you use, for example, planting a tree.
- 3 And it would take CO2 out of the atmosphere but you
- 4 don't really know where that CO2 came from but it still
- 5 results in a reduction for the CO2 in the atmosphere.
- 6 Several storage locations exist under
- 7 carbon sequestration. Some of these are underground
- 8 reservoirs deep in the earth. And the types of
- 9 reservoirs that we look at here, oil and gas reservoirs,
- 10 reservoir type called Saline Reservoirs that contains a
- 11 salty brackish water. And the other is unmineable coal
- 12 seams can also be used as a storage option.
- 13 Another type of option is putting CO2,
- 14 dissolving it in the deep oceans. Right now deep ocean
- 15 sequestration is just a concept that we're pursuing
- 16 because we don't understand yet all the environmental
- 17 implications of this. We do know that the ocean is the
- 18 largest natural sink. So it's fundamental that we
- 19 understand the mechanisms of how CO2 uptake in the ocean
- 20 occurs.
- 21 Converting it to solid materials. There
- 22 are ways there we can actually take CO2 and convert it
- 23 to a rock like material called carbonates. That's

- 1 permanent sequestration.
- 2 And lastly an option we call Terrestrial
- 3 Sequestration that essentially means reforce station
- 4 planting trees, other agricultural means such as in
- 5 farming applications, which could be predominant in this
- 6 area. For example, applications such as what we call No
- 7 Till Farming to leave more carbon stored in the soils.
- 8 These are the various
- 9 storage/sequestration approaches that are being
- 10 considered.
- 11 Let me now walk you through a little bit
- 12 of the fossil energy situation and give you an idea what
- 13 all the buzz is about. The left pie shows the energy,
- 14 the world's dominant energy sources in United States.
- 15 And the right pie shows it in the world. In both cases
- 16 fossil fuels, and what we mean by fossil fuels are coal,
- 17 natural gas and oil, account for about 86 percent of the
- 18 energy mix in both the United States and the world. So
- 19 fossil fuels, as of this chart, as of today's date are
- 20 very predominate energy source.
- 21 Now, let's take a look at where we think
- 22 fossil fuels are going, at least over the next 25 years.
- 23 Many forecasting agencies take a look at these

1 scenarios. And in nearly all cases, at least for the

- 2 next 25 years and through the mid-Century, nearly all
- 3 reputable forecasters indicate that fossil fuels are not
- 4 only here to stay but will likely increase.
- 5 This bottom left pie shows some of the
- 6 data from the previous slide that shows the scenario in
- 7 2002 where fossil fuels are 86 percent of the United
- 8 State's mix. Then we go to a 2025 forecast that shows
- 9 fossil fuels remaining now at about 87 percent. But the
- 10 importance here is there's an increase of 40 percent
- 11 increase in the use of fossil fuels. So the amount used
- 12 in 2002 with this forecast would increase in 2025.
- 13 The reason this is important is when you
- 14 burn a fossil fuel, it contains carbon. You create CO2,
- 15 this predominant greenhouse gas. So what this would
- 16 indicate is the CO2 we're emitting now could increase
- 17 potentially 40 percent in 2025 based on these kind of
- 18 forecasts. So fossil fuels are here to stay at least
- 19 toward the middle of the century.
- 20 What are some of the greenhouse gas
- 21 implications of this? Now this is a bit of a
- 22 complicated slide but I want to point to the bottom
- 23 curve. This is data showing several hundred thousand

- 1 years of data obtained using ice cores and more recently
- 2 direct measurements. The bottom line, the black line
- 3 shows temperature. The top line shows CO2
- 4 concentration.
- 5 So one message and point I want you to
- 6 take away from this is temperature of the earth has
- 7 tracked CO2 concentration for several hundred thousand
- 8 years. Now let's take a look at this red line on the
- 9 right hand side axis that shows what's happened since
- 10 the Industrial Revolution within the last 150 years.
- 11 CO2 concentration has increased 30 percent.
- 12 Because over this long term data there is
- 13 such a good correlation in tracking between temperature
- 14 and concentration, hence since CO2 concentrations gone
- 15 up so significantly, there is some of the concern that
- 16 people have, if temperature would track that. Right now
- 17 CO2 concentration is going up about 1.5 PPM per year.
- 18 So this shows it's gone up to 470 PPM. It's going up
- 19 about 1.5 PPM per year based on current emissions.
- Now, let's take a look at the primary
- 21 greenhouse gases that exist in the United States. And
- 22 this is representative of many developed countries as
- 23 well. What you see here is that CO2 from energy, so the

1 burning of fossil fuels primarily accounts for about 81

- 2 percent of the greenhouse gas emissions in the United
- 3 States.
- 4 Another major component is, you see a
- 5 methane component there of 9 percent. Methane component
- 6 is primarily fugitive methane emissions from landfills,
- 7 coal mines and natural gas pipeline system. The reason
- 8 this graph is of significance is our sequestration, R&D
- 9 Program, focuses about 90 percent or more of its effort,
- 10 95 percent of its effort on the CO2 issue. And then
- 11 about 5 percent of the effort on this fugitive methane.
- 12 And the reason is because of what this graph points to.
- 13 Here's another set of data showing the
- 14 fossil fuels mix by energy sector. And I want to point
- 15 you to the bottom middle, the middle pie showing that in
- 16 the United States right now the fossil fuel mix is
- 17 predominantly oil, about 46 percent, followed by natural
- 18 gas and coal, both at about 27 percent each. So the
- 19 bottom line is fossil fuels have carbon. When you burn
- 20 them they produce CO2. So they all contribute.
- 21 The other point I want to make here is if
- 22 you look at the right hand side you'll see that
- 23 electricity accounts to close to 40 percent of the

- 1 contribution of greenhouse gas in the United States.
- 2 Transportation, a smaller percentage of 30 percent. And
- 3 then a category Other.
- 4 A point here again relative to the R&D
- 5 that's being developed is a large focus on the R&D is on
- 6 coal. And a large focus is on electricity. And mainly
- 7 because electricity in power plants offer a nice large
- 8 central station source that we can attack and capture
- 9 significant quantities of CO2.
- 10 Essentially three ways that you can deal
- 11 with carbon management and greenhouse gases. The first
- 12 is some people call these legs of a triangle, corners of
- 13 a pyramid. These are just very high level options that
- 14 exist, categories. One is to reduce the carbon
- 15 intensity. Ways we can do that are renewables, like
- 16 wind, solar, nuclear and something called fuel switching
- 17 where you switch from the high carbon base fuel to a
- 18 lower carbon based fuel.
- 19 Improved efficiency both on a demand and
- 20 supply side. On the supply side we'd be looking at
- 21 improving efficiency of power plants, for example. So
- 22 burning less coal per unit or burning less fuel per unit
- 23 of energy. On the demand side you'd be looking at

1 things like more efficient vehicles, more efficient

- 2 refrigerators, appliances, et cetera.
- What we're here to talk about in the
- 4 issue we're dealing with is the third option, which is
- 5 sequestering carbon. And the point I want to make from
- 6 this slide also is, and I'm going to show later on in
- 7 the presentation, that the emissions are so, so large
- 8 that all three of these options will be needed should we
- 9 decide to significantly address the issue of greenhouse
- 10 gases.
- In the United States there are
- 12 essentially two presidential drivers that exist, that
- 13 drive our program. One is called, on the left, the
- 14 National Climate Change Technology Initiative, which
- 15 President Bush released on June 11th, 2001. And the
- 16 importance of that initiative, it was the first time
- 17 that the administration addressed the issue of climate
- 18 change. And more importantly, they also mentioned
- 19 carbon sequestration as one of the possibly viable
- 20 options that should be looked at to address this issue.
- 21 The second initiative occurred February
- 22 14th, 2002, called the Global Climate Change Initiative.
- 23 Lloyd earlier addressed this in some of his speech.

1 And essentially what this did is it reinforced the idea

- 2 of using technology such as carbon sequestration to deal
- 3 with this issue.
- 4 What it also did is for the first time in
- 5 the United States, it put some measurable metric on our
- 6 greenhouse gas emissions, this quantity called the
- 7 Greenhouse Gas Intensity. And I'll just show that in a
- 8 few minutes in terms of what that means in terms of
- 9 emission levels within the United States.
- 10 Another reason sequestration gets a lot
- 11 of interest andhoopla is because of its large storage
- 12 capacity. When we're dealing with greenhouse gas
- 13 initiatives, and especially CO2, you're talking about
- 14 buildings of tons of this stuff. And very few levers
- 15 exist for us to pull to deal with those kind of emission
- 16 levels. Sequestration is one that can provide the kind
- 17 of capacities we need for storage.
- 18 What this graph shows on the right hand
- 19 side is the Annual World Emissions. Don't get too hung
- 20 up on the data or the units for the number. But it's
- 21 6.5 for the world emissions last year. On this other
- 22 axis we show some various sequestration options that
- 23 could exist to store these emissions. And you'll see

- 1 there's a more solid blue line at the bottom which is
- 2 the lower level estimate and then a range of estimates.
- 3 A lot of these sinks are unproven.
- 4 But what this shows is there's at least a
- 5 century more of capacity with the sequestration concept
- 6 to deal with these emissions, if not centuries worth.
- 7 That's why, another reason why sequestration gets a lot
- 8 of attention because of its potential.
- 9 We've also done some analysis that said,
- 10 and this is a U.S., United States scenario, to say what
- if we were to stabilize by mid-century at some level?
- 12 So what we've done is we said let's try to stabilize at
- 13 2002 levels by mid-century. What are the options
- 14 available to us to mitigate that amount of greenhouse
- 15 gas emissions.
- 16 What this shows is, and don't worry again
- 17 about the units, but what this shows is in the year
- 18 2050, what you see is there's this number 1700 million
- 19 metric tons would have to be dealt with in the United
- 20 States. We've done some analysis to show what is
- 21 available that could allow us to mitigate those
- 22 emissions.
- 23 And what you see here are, you'll see

- 1 energy, you'll see everything is needed. Efficiency in
- 2 renewables is the bottom color. Reforce station
- 3 agriculture is the yellow. Non-CO2 greenhouse gases,
- 4 these are those fugitive methane emissions.
- 5 Sequestration are the top two bars. So the message
- 6 again from these analyses are that the sequestration
- 7 will not only be likely needed, it will likely have to
- 8 bear the brunt of the burden in reducing these emissions
- 9 because the numbers are just ever so large. That 1,700
- 10 number, a large sized full fire power plant would be
- 11 about 5, 5 per year, 5 million just to show you that
- 12 it's a very huge number. But sequestration offers
- 13 tremendous potential.
- What are some of our requirements for
- 15 sequestration? Many of these are obvious but in the
- 16 program we take them very serious from an R&D
- 17 standpoint. We have to show that it's environmentally
- 18 acceptable. No legacy for future generations. We have
- 19 to ensure that it respects all existing ecosystems. We
- 20 have to show that it's safe. No sudden large scale
- 21 discharges. We also need to show, even if it's leaking
- 22 in small quantities, that we're able to not only track
- 23 it and determine that but we're able to stop it.

1 That it's verifiable. We need to make

- 2 sure that when we put CO2, if we put it in the ground or
- 3 we try to store CO2 in a newly planted tree, that we're
- 4 able to track it and show that it stays there for a
- 5 given period of time, if not forever.
- 6 Within the Department of Energy there's
- 7 several organizations and divisions looking at
- 8 sequestration and climate change. What this chart shows
- 9 is, the upper box shows the climate change technology
- 10 program, which is a coordinating function within the
- 11 department. The lower right hand box shows basic
- 12 science research that's occurring in what we call the
- 13 Office of Science. Here is where a lot of the
- 14 fundamental issues are being addressed.
- 15 The left hand box is where our carbon
- 16 sequestration program resides, in the Office of Fossil
- 17 Energy. You'll see there it's called Applied R&D. And
- 18 the reason that we're the group coming out with this
- 19 programmatic environmental impact statement is because
- 20 we have these technologies that are likely to be needed
- 21 to be tested at a large scale into the future. And
- 22 that's why we're driving this process.
- 23 Also, to show you too, not only within

- 1 the DOE but within the government, climate change and
- 2 sequestration research is taken very seriously. Nearly
- 3 every government organization in some way, shape or form
- 4 deals with sequestration related research. Our program
- 5 interacts with many of these.
- Just two examples. One in the upper
- 7 right hand box, the EPA, the Environmental Protection
- 8 Agency. One of their primary responsibilities are these
- 9 non-CO2 or fugitive methane greenhouse gases reduction.
- 10 The lower left hand box, you see the United States
- 11 Department of Agriculture. It's looking at four stream
- 12 agricultural increased carbon octane in those systems.
- 13 This is the high level of our Carbon
- 14 Sequestration Program. The core program is shown in
- 15 that left blue bubble. And it's divided into five
- 16 segmented areas; sequestration, capture, break through
- 17 concepts, fugitive methane emissions and what we call
- 18 measurable verification, which are technologies we're
- 19 developing to track the fate of the CO2 when we store
- 20 it. More information about that program is available
- 21 both in the materials here and some locations I'll show
- 22 you in a few slides.
- 23 We also have another effort we call the

- 1 Regional Partnerships, which is looking at the
- 2 infrastructure. There is a Regional Partnership called
- 3 the Illinois Basin that covers this region of the
- 4 country. Some representatives from that partnership are
- 5 here.
- There's also another part of the program
- 7 which we call Integration. And essentially what this is
- 8 is taking some of these concepts to the field to test
- 9 them at a large scale to show that they're viable, to
- 10 show that they do what the R&D says that they will do.
- 11 Give you a sense of our regional
- 12 partnerships, we have seven regional partnerships that
- 13 cover most of the country. These partnerships are
- 14 comprised of over 154 organizations, two Canadian
- 15 provinces, three Indian nations and right now 40 states
- 16 that are looking at the issues of sequestration in these
- 17 various regions. As I indicated, the Illinois Basin
- 18 star there is what covers this particular region.
- 19 AUDIENCE: What do the colors indicate?
- 20 MR. KLARA: Their coverage area. Colors
- 21 indicated, for example, the west coast is in blue. All
- 22 the blue areas are the states that are covered by that
- 23 partnership. And you'll see some colors, to confuse you

- 1 a little bit, if some colors overlap, that means that
- 2 some of this partnership covers part of the state and
- 3 some of this partnership covers part of the state. So
- 4 that's what the colors represent.
- 5 What these regional partnerships do when
- 6 we talk about infrastructure, the fact is if we have
- 7 technologies today that were cost effective, we
- 8 understood the performance issues, we couldn't deploy
- 9 them tomorrow. And the reason is a lot of
- 10 infrastructure pieces don't exist for carbon
- 11 sequestration.
- 12 For example, baseline in regions for
- 13 sources and sinks. We have a good understanding in a
- 14 very broad level of huge geologic formations that exist
- 15 in the United States. Some of that capacity, much of
- 16 that capacity is unproven. So what we need to do is get
- 17 a good understanding of these large areas, what's real
- 18 and what's not in terms of carbon sequestration
- 19 potential and matching those to the sinks that are
- 20 available in a given region.
- 21 Another is regulatory environmental and
- 22 outreach issues. Most people haven't heard of the
- 23 carbon sequestration terminology and concepts. Another

- 1 reason this PIS will hopefully be helpful in spreading
- 2 the word of this concept.
- Regulatory; how is this regulated if we were
- 4 to start pumping into the ground? All these issues are
- 5 infrastructure issues that we really need to deal with.
- 6 Establishing water verification
- 7 protocols. It's one thing to develop the technology
- 8 that can take a snapshot of the reservoir and see where
- 9 the CO2 is. It's another thing that's more of a
- 10 subjective nature of how often do you have to take that
- 11 snapshot that we have to monitor? Take that snapshot
- 12 once a day? Once a month? Once a year of some mixture
- 13 thereof? And that's going to be determined, hopefully,
- 14 with the help of our regional partnerships in getting
- 15 down to what's safe and what's realistic to be able to
- 16 do.
- 17 And lastly, just talk about the
- 18 determining benefits of the region. Sequestration can
- 19 and will likely have benefits to our region. When you
- 20 put CO2 in a geologic formation there are several
- 21 options that can produce some value added benefits. For
- 22 example, you can put CO2 in the ground in a depleting
- 23 oil reservoir and produce oil. You can put CO2 in the

- 1 ground into a coal formation and produce natural gas.
- In some states, for example, New Mexico,
- 3 it's very difficult getting water. They're looking at
- 4 putting CO2 in the ground to help produce this brackish
- 5 salty water and cleaning it up for drinking purposes.
- 6 Potential benefits do exist with this concept as well to
- 7 the greenhouse gas issues.
- 8 Talk about our future gen project.
- 9 Billion dollar effort we're entering into to test these
- 10 concepts at a large scale. This project would be
- 11 looking at taking a coal based technology called
- 12 gasification, production electricity and hydrogen and
- 13 then sequestering greenhouse gases, in this case CO2, to
- 14 a geologic formation. A billion dollar plant we're
- 15 looking at here to test these concepts at a very large
- 16 scale. This project is just under way. It's probably
- 17 still years away from actually getting out into the
- 18 field. But the hope would be that this programmatic EIS
- 19 would be very helpful to the environmental impact issues
- 20 that they would have to face.
- 21 I would like to end the presentation to
- 22 show you some source of information in addition to the
- 23 materials that are provided here. We have a very

- 1 extensive website shown here and materials are available
- 2 that you can find on this website. And I think it's one
- 3 of the most extensive websites in the world in terms of
- 4 carbon sequestration, what it's about, what's going on
- 5 in the R&D programs.
- And lastly we also offer an electronic
- 7 carbon sequestration newsletter. It's free of charge if
- 8 you have an e-mail account and essentially you can go to
- 9 the information listed here. Hit us with an e-mail
- 10 message and you will be put on there to receive free of
- 11 charge a monthly newsletter that discusses in very short
- 12 paragraph blurbs emerging issues and activities that are
- 13 occurring in the world of carbon sequestration, both
- 14 technology and policy side.
- 15 And with that I'll end the presentation
- 16 and hand it back over to Lloyd who will carry us forward
- 17 from here. Thank you.
- 18 MR. LORENZI: Thanks, Scott.
- 19 We previously had three individuals who
- 20 requested to make comments tonight on Scott's
- 21 presentation on a need to address CO2. Some of the
- 22 indicators of our sequestration activities may have
- 23 prompted some additional comments. But we will take the

- 1 individuals who previously requested to speak first.
- 2 And then open up the floor to any others who desire to
- 3 make comments tonight.
- 4 It's a small group. We had previously
- 5 thought that five minutes would be appropriate based on
- 6 some of the comments we've had at prior meetings. Since
- 7 this is a small group and we had only three people
- 8 registered to speak, we'll dispense with the five minute
- 9 limit but if you do speak, just keep it reasonable.
- 10 We would ask that all speakers, for the
- 11 purpose of the Court Reporter, spell their name and
- 12 indicate their organizational affiliation if they are
- 13 making comments on behalf of an organization.
- 14 The first person who registered to speak
- 15 was Nancy Mittleton. And she's talked to me a little
- 16 bit earlier and I believe she had to leave the meeting.
- 17 So, Nancy was first and she's not currently in the
- 18 room. The second person who had requested to speak was
- 19 Paul Pierre Louis. Paul, would you use the microphone?
- 20 MR. PIERRELOUIS: My name is Paul, P-a-u-l, P
- 21 as in Peter, i-e-r-r-e-l-o-u-i-s. I'm a project
- 22 engineer in our Office of Coal Development, Department
- 23 of Commerce and Economic Opportunity.

```
1 I'm here today representing the Illinois
```

- 2 Office of Coal Development. Bill Hoback, chief of the
- 3 office, could not be here today. I would like to add
- 4 that the Department of Commerce and Economic Opportunity
- 5 Bureau of Energy and Recycling wanted to attend in order
- 6 to make supportive comments about the sequestration
- 7 program. Unfortunately, their schedule did not permit
- 8 them to do so. But they will submit written comments.
- 9 We have come to express our enthusiastic
- 10 support of our partners at the USDOE and the Illinois
- 11 State Geological Survey. Like many people who are
- 12 beginning to understand the subject matter of this
- 13 meeting, it wasn't long ago that the only things
- 14 sequestered in America were juries, usually in major
- 15 criminal trials, perhaps, as often as not, in a
- 16 rendition from Hollywood.
- 17 Today, as we address the realities of
- 18 making our world a safer place, sequestration of carbon
- 19 is a scientific phrase that our folks are using quite
- 20 often as we travel about the state. Anyone who is in
- 21 our line of work, anyone who realizes the challenges to
- 22 fossil fuels as an energy source of the future, needs to
- 23 help the Department of Energy and other advocates make

- 1 our case to the public.
- We can, and we must proceed aggressively
- 3 toward multiple carbon sequestration strategies. Our
- 4 future as a nation, we believe, depends on the cleaner
- 5 use of fossil fuels, specifically in our case, Illinois
- 6 coal. It is reliable, affordable and secure. But in
- 7 saying that it is our responsibility and the
- 8 responsibility of our coal producers and users, to be
- 9 four square behind the kind of progress that DOE,
- 10 Geological Survey and others are making to harness
- 11 greenhouse gases.
- 12 Having said, that, I'll take just a
- 13 minute more to emphasize how critical this work is to
- 14 our people and to our state. Like many coal-mining
- 15 regions, Illinois has suffered a great loss of jobs and
- 16 economic activity since the first days of the Clean Air
- 17 Act. We cannot reverse that trend by stomping our feet.
- 18 And, as you know, no state in the nation puts the kind
- 19 of resources that Illinois does into helping develop
- 20 clean air technologies for burning or processing coal
- 21 and for more advanced use of coal combustion byproducts.
- We applaud the advances made to date by
- 23 the DOE Office of Fossil Energy, which was on the

1 cutting edge of sequestration technology as far back as

- 2 1999. We agree with the assessment that sequestration
- 3 techniques and practices must provide stable, long-term
- 4 storage, be cost competitive, and have no negative
- 5 effects on the environment.
- 6 We are impressed by the potential for
- 7 underground storage of CO2 in the staggering amounts of
- 8 300 to 3,000 gigatons of carbon. But that kind of a
- 9 capcity is necessary, we believe, if we are to provide a
- 10 real and appreciable impact on greenhouse gas reduction.
- Our state, we believe, has great promise
- 12 for the underground sequestration of CO2. The Illinois
- 13 Coal Basin underlies 80 percent of the surface of
- 14 Illinois. We have more unmineable seams of coal than
- 15 almost anywhere else in the United States. We have, in
- 16 addition, oil and gas fields from which additional
- 17 resources could be derived to support a major
- 18 sequestration effort.
- 19 Governor Blagojevich and our Illinois
- 20 congressional delegation are steadfast behind Illinois'
- 21 bid to host DOE's forward-looking FutureGen initiative.
- I am proud to say that they are joined by our coal
- 23 industry, our environmental community and the working

- 1 men and women of the coal fields of Illinois.
- I thank you for the opportunity to speak.
- 3 We have a strong team in Illinois and I'm proud to be
- 4 part of it.
- 5 MR. LORENZI: Thank you, Paul. Did you say
- 6 you were going to submit written comments also? Will
- 7 you leave a copy of your comments? Thank you.
- 8 The third individual was Marvin Keith.
- 9 MR. KEITH: I'm a retired mechanical engineer.
- 10 I worked with Wisconsin Natural Gas for a number of
- 11 years in the '80's. I was the Racine County Environment
- 12 Engineer as such. And I am familiar with the natural
- 13 gas part of carbon dioxide production. I'll reserve my
- 14 comments, my technical comments. I'll submit them in
- 15 writing at a later date.
- 16 But I want to say I'm excited about this
- 17 program for Illinois because the coal industry is a
- 18 major resource for Illinois. And it's gotten a lot of
- 19 grief from the Greens. I'm surprised if there aren't
- 20 members of the Green Party here. Maybe there are. But
- 21 I would expect to see pickets outside and trouble
- 22 because I think they're just against anything that
- 23 fosters the burning of coal.

```
1 And I think it's our only real hope
```

- 2 energy wise. And I'm very pleased that this program
- 3 exists. And I'm sorry that Illinois doesn't seem to be
- 4 talking about it. I stumbled on the fact that this
- 5 meeting was occurring just a couple of days ago by
- 6 surfing the net. And I'm dismayed that so many chairs
- 7 are empty here.
- 8 How many people have turned out at the
- 9 other meetings that you had?
- 10 MR. LORENZI: It varies, depending on meeting
- 11 location.
- 12 MR. KEITH: Is this typical?
- 13 MR. LORENZI: This is one of the smaller turn
- 14 outs.
- 15 MR. KEITH: I hope so. But I would say that
- 16 you need a better, would you say advertizer? Somebody
- 17 has to be talking about it more because there should
- 18 have been representatives from the universities here.
- 19 There should have been high school students here that
- 20 are interested. I mean, this was a great opportunity to
- 21 get an idea that something good is happening about coal,
- 22 you know?
- 23 And that's all I have to say.

```
1 MR. LORENZI: I would make one request of you
```

- 2 then. Besides submitting technical comments, if you
- 3 could submit any other suggestions on who to notify or
- 4 how to notify organizations --
- 5 MR. KEITH: Are you hiring?
- 6 MR. LORENZI: -- to get better turn out.
- 7 Ask Scott.
- 8 MR. KEITH: I'll do that.
- 9 MR. LORENZI: Appreciate it, thank you.
- 10 Are there any other individuals or
- 11 attendees who want to make some comments tonight about
- 12 what they've heard, about this program or about
- 13 developing the environmental impact statement?
- MR. KEITH: Why is it going to take so long
- 15 for the impact statement to be finished?
- 16 MR. LORENZI: Okay, we have to complete eight
- 17 public meetings for this particular project. And we
- 18 have to allow a certain amount of time following those
- 19 meetings for delivery of comments. That's why we have
- 20 June 25th as a closing date for comments.
- 21 Following that, of course we have to
- 22 assemble a lot of information on carbon sequestration
- 23 activities, program, respond to comments. We have had

- 1 some comments of a substantive nature that we didn't
- 2 think of initially going in. So there's work to be done
- 3 technically to prepare this document. It's not the kind
- 4 of document that Scott, say, or I can issue. This is a
- 5 Department of Energy document. And therefore it has to
- 6 clear our office in Pittsburgh, it'll have to clear the
- 7 offices in Washington, D.C. It'll have to have legal
- 8 review and legal clearance before it gets -- there will
- 9 be several versions of this before it ever hits the
- 10 public domain.
- 11 MR. KEITH: How many engineers are working on
- 12 the project?
- MR. KLARA: EIS only or?
- MR. KEITH: Any part that you're aware of.
- 15 MR. KLARA: Well, the program has, boy, that's
- 16 probably a hundred or more.
- 17 MR. KEITH: Okay, they're well represented.
- 18 MR. KLARA: Yes.
- 19 MR. LORENZI: Any other comments? No other
- 20 comments. We certainly appreciate your coming out
- 21 tonight for the meeting. We appreciate the people who
- 22 did speak and we look forward to the written comments
- 23 that will be submitted. And we hope that those in

1 attendance who didn't speak will think about this

- 2 particular activity, the DIS effort, carbon
- 3 sequestration in general. And we would encourage you to
- 4 take the opportunity to submit comments up until June
- 5 25th. Take some comment sheets before you leave.
- 6 There's information on who to contact as far as
- 7 submitting comments in one of the brochures back there.
- 8 Take the opportunity, please, if you do have the
- 9 interest.
- 10 And we again thank you for your presence
- 11 here tonight and hope you have a safe trip back to your
- 12 homes. And I won't give you any other chance comment.
- 13 So we'll just close the meeting with that comment of
- 14 mine.
- 15 MR. KEITH: One other question. Is there
- 16 instructions on who to direct additional questions to?
- 17 MR. KLARA: Yes, I'll show you that in just a
- 18 minute.
- 19 MR. LORENZI: So we'll call the meeting to a
- 20 close then. It's about 7:45.
- 21 (Whereupon, the above meeting was
- concluded at 7:45 p.m.)